Tag: commuting

Time commuting in Belgium

DISO1 – Data I Sit On, episode 1. This post is the first of a series of a few exploring data I collected in the past and that I found interesting to look at again … (I already posted about data I collected, see the Quantified Self tag on this blog)

Life is short and full of different experiences. One of the experiences I don’t specifically enjoy but is integral part of life is commuting. Although I tried to minimize commuting (mainly by choosing home close to the office) and benefit(ed) from good work conditions (flexible working hours, home working, etc.), a big change occurred when I took a new opportunity, in 2015, to work in the Belgian capital, Brussels.

Debian-lover-car-jepoirrier-on-flickr
Traffic jam in Brussels – one of my pictures on Flickr (CC-by-sa)

From where I lived at that time, using public transportation was not a viable option, unfortunately: it implied roughly 2 hours to go one way and changing at least 2 times between bus, train and metro. Anyway Belgium is know for having lots of cars and I benefited from a company car. Since some time, I’m also interested in Quantitative Self so I started collecting data about my daily commute.

What I try to see is the seasonality of commuting (I would initially expect shorter commute time during school breaks), the differences between leaving for work after driving children to school or without driving them, … There is also an extensive literature on the impact of commuting on the quality of life …

So, how did I do that?

The route usually taken, between my home then (in Wavre) and my office then (in Brussels, both in Belgium), is 28km long and the fastest I ever saw on Google maps to drive this distance is about 20-25 minutes.

I took note of the following elements in whatever default note-taking app is there in my phone at that moment (Keep on Android, Notes on iOS). The first field in each row is the date in a %y%m%d format, i.e. year, month and day of month as zero-padded decimal numbers, 2 digits only for each. The second field is the start time in a %H%M format, i.e. hours (24-hour clock) and minutes also as zero-padded decimal numbers, 2 digits only for each. Start time is defined when I enter my car at home, in the morning. The third field is the arrival time (same format as start time), defined as when I stop the engine at work. The fourth and fifth fields are start and arrival times when I go back home, defined and formatted the same way, mutatis mutandis. Any missed start/arrival times is marked as “na” or “NA”. It corresponds, for instance, at times when I leave the office but I stop to meet a client (or more prosaically, to do grocery shopping) before coming back home. I may have missed one or two whole days at max. The data is on Github.

On a daily basis, the little game is to try to figure out which lane is the fastest, if there is a pattern in the journey that makes it faster (I think there is). However, there are so many little things to track in this game that I did not track these small differences. The journey is assumed to take more or less the same route.

At the end, the complete log is saved on my computer and analysed in R (version 3.3.2). The typical measures I’m interested in are departure/arrival times over time, commute duration over time, commute duration per month or per day of the week or per season, … for both the morning and afternoon journeys if applicable. Some funny measures should be the earliest I left for work, the latest I arrived at work, the earliest I left work, the latest I left work, the shortest journey ever (to compare to Google estimate) and the longest journey ever …

An unintended measure here is the amount of time actually spent in the office (on a side note, this is different than productivity – but I didn’t find any unambiguous or flawless measure of productivity so far …). Some interesting variations could be to see the average and median duration of my work days, the shortest day or longest day I had, … (I don’t know if my former employer would be happy or angry to see these results 😉 but note this doesn’t take into account the numerous times I worked from home, even in evenings after having worked the whole day in the office …).

In theory, the fastest I could go is at an average 84km/h (28km in 20 minutes, according to Google Maps, so this is according to traffic, not maximum speed limits). In practice, this is a whole different story …

In a bit more than a year of collected data:

  • the earliest I left home was 6.11 and the latest 10.11;
  • consequently, the earlier I arrived at work was 6.32 and the latest 10.36;
  • the shortest trip to work was 18 minutes and the longest one was 160 minutes (it was on March, 22, 2016, the day of Brussels airport bombing because the office is close to the airport – I still remember);
  • the earliest I left work was 12.34 (I assume half-day of holidays) and the latest 21.24 (I assume lots of work then);
  • consequently, the earlier I arrived back home was 12.59 and the latest 21.43;
  • the shortest trip back home was 7 minutes (there should be some input error here!!!) and the longest trip was 128 minutes (nothing surprising, here, with Brussels traffic jams).

Finally, the shortest stay in office was 242 minutes (4 hours and 2 minutes) – it was that half-day of holidays. And the longest stay in office was 754 minutes (12 hours and 34 minutes).

As always, these things are nice when rendered as graphs …

180215-BxlAllTrafficPoints

A first note it that none of these graphs show any seasonality in the data. At first, I thought I would go faster during school holidays – but it was more a feeling than anything else, as the data show. And although the time at work varied widely over time, the average time spent at work seems to be pretty constant over the year, I was surprised by this:

180215-BxlTimeSpentAtWork

Finally, the time spent in car depending on the departure time is interesting:

180215-BxlTimeSpentInCar

Going to work was clearly split into 2 periods: leaving home (“Start Time”) before 8.30 and after 8.30. That’s because either I went early (and avoided the morning rush hour) or I drove the kids to school and drove to work at the end of rush hour. But although I tried to minimize the journey, the journey after driving the kids to school was still taking more time.

For the evening, going home became a shorter trip if I was able to delay it. And the later I come back, the shorter the trip. (However, if I didn’t drive the kids to school in the morning, the deal is that I would pick them up in the afternoon – fortunately, afterschool care is cheap in Belgium).

All this to come to the quality of life … I didn’t measure anything related to quality of life. I just remember that the first few weeks were very tiring. However, this commuting factor should be added to other tiring factors: learning a new job, adjusting to a new environment, etc. But there is a body of scientific work looking at the quality of life of commuting (I really like this paper as a starter [1], probably because it was published during that period): fatigue, stress, reduced sleep time, heart disease, absenteeism, BMI (weight), … are all linked – in a way – to commuting (either driving or just sitting in public transport).

[1] Künn‐Nelen, A. (2016) Does Commuting Affect Health? Health Econ., 25: 984–1004. doi: 10.1002/hec.3199

And a last point: privacy. This data is from 2015-2016. People who know me (even former colleagues!) know where I worked. And even without knowing me, you know when I leave home, when I leave the office, my pattern of organization, etc. Do I want that? Part of the answer is that I only post this data now, 2-3 years later. On the other hand, here is another free, small dataset!

Next steps? I’m continuing to track my journeys to work, even now we moved to the USA. For privacy reasons, I will not publish those data immediately. But it will be interesting, later, to compare the different patterns and try to understand at least some differences … It would also be interesting to give more time to this small experiment and, for instance, try to capture any impact on mood, productivity, … But this would become a whole different story!